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Theory of slow-light solitons
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In the framework of the nonlinear A model we investigate propagation of solitons in atomic vapors and
Bose-Einstein condensates. We show how the complicated nonlinear interplay between fast solitons and slow-
light solitons in the A-type media points to the possibility to create optical gates and, thus, to control the optical
transparency of the A-type media. We provide an exact analytic description of decelerating, stopping and
reaccelerating of slow-light solitons in atomic media in the nonadiabatic regime. Dynamical control over
slow-light solitons is realized via a controlling field generated by an auxiliary laser. For a rather general time
dependence of the field; we find the dynamics of the slow-light soliton inside the medium. We provide an
analytical description for the nonlinear dependence of the velocity of the signal on the controlling field. If the
background field is turned off at some moment of time, the signal stops. We find the location and shape of the
spatially localized memory bit imprinted into the medium. We discuss physically interesting features of our
solution, which are in a good agreement with recent experiments.
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I. INTRODUCTION

Recent progress in experimental techniques for the coher-
ent control of light-matter interaction opens many opportu-
nities for interesting practical applications. The experiments
are carried out on various types of materials such as cold
sodium atoms [1,2], rubidium atom vapors [3-6], solids
[7.8], and photonic crystals [9]. These experiments are based
on the control over the absorption properties of the medium
and study slow light and superluminal light effects. The con-
trol can be realized in the regime of electromagnetically in-
duced transparency (EIT), by the coherent population oscil-
lations or other induced transparency techniques. The use of
each different materials brings specific advantages important
for the practical realization of the effects. For instance, the
cold atoms have negligible Doppler broadening and small
collision rates, which increases ground-state coherence time.
The experiments on rubidium vapors are carried at room
temperatures and this does not require application of compli-
cated cooling methods. The solids are obviously one of the
strongest candidates for realization of long-living optical
memory. Photonic crystals provide a broad range of paths to
guide and manipulate the slow light. The interest in the phys-
ics of light propagation in atomic vapors and Bose-Einstein
condensates (BECs) is strongly motivated by the success of
research on storage and retrieval of optical information in
these media [1-4,10,11].
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Even though the linear approach to describing these ef-
fects based on the theory of electromagnetically induced
transparency [12] is developed in detail [13], modern experi-
ments require more complete nonlinear descriptions [11].
The linear theory of EIT assumes the probe field to be much
weaker than the controlling field. To allow significant
changes in the initial atomic state due to interaction with the
optical pulse, here we go beyond the limits of linear theory.
In the adiabatic regime, when the fields change in time very
slowly, approximate analytical solutions [14,15] and self-
consistent solutions [16] were found and later applied in the
study of processes of storage and retrieval [17]. Different
EIT and self-induced transparency solitons of nonlinear re-
gime were classified and numerically studied for their stabil-
ity [18]. As was demonstrated by Dutton er al. [19] strong
nonlinearity can result in interesting new phenomena. Recent
experiments and numerical studies [11,20] have shown that
the adiabatic condition can be relaxed allowing for much
more efficient control over the storage and retrieval of opti-
cal information.

In this paper we study the interaction of light with a gas-
eous active medium whose working energy levels are well
approximated by the A scheme. Our theoretical model is a
very close prototype for a gas of sodium atoms, whose inter-
action with the light is approximated by the structure of lev-
els of the A type. The structure of levels is given in Fig. 1,
where two hyperfine sublevels of sodium state 3% 12 With
F=1,F=2 are associated with |2) and |1) states, correspond-
ingly [1]. The excited state |3) corresponds to the hyperfine
sublevel of the term 3>2P3/2 with F'=2. We consider the case
when the atoms are cooled down to microkelvin tempera-
tures in order to suppress the Doppler shift and increase the
coherence lifetime for the ground levels. The atomic coher-
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FIG. 1. The A scheme for working energy levels of sodium
atoms. The parameters of the scheme are the following: w;,/(27)
=1772 MHz, w/(2m)=5.1 X 10" Hz (\=589 nm), and A is the
variable detuning from the resonance.

ence lifetime in sodium atoms at a temperature of 0.9 uK is
of the order 0.9 ms [2]. Typically, in the experiments the
pulses have length of microseconds, which is much shorter
than the coherence lifetime and longer than the optical relax-
ation time of 16.3 ns.

The gas cell is illuminated by two circularly polarized
optical beams copropagating in the z direction. One beam,
denoted as channel a, is a o~ -polarized field, and the other,
denoted as b, is a o™-polarized field. The corresponding
fields are presented within the slow-light varying amplitude
and phase approximation (SVEPA) as

E=¢,E,e ko) 4 5,6, ¢ c. (1)

Here, k,,; are the wave numbers, while the vectors ¢,,¢,
describe polarizations of the fields. It is convenient to intro-
duce two corresponding Rabi frequencies

2M[tg[l zlu“hgb
a— ﬁ ’ b— h >

2)

where u, ;, are dipole moments of quantum transitions in the
channels a and b.

In the interaction picture and within the SVEPA, the
Hamiltonian Hj=H,+H; describing the interaction of a
three-level atom with the fields is defined as follows:

A 1
HOZ—_D, Hl:_E(Qa|3><l|+Qb|3><2|)+H'C" (3)

2

where

0
0

S

1l
o o =
o = o

-1

Here A is the variable detuning from the resonance and we
set i=1.

The dynamics of the fields is described by the Maxwell
equations
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where v,=(ny|w,*w,)/ €5, vy= (14 pp)>w,)/ €, ny is the den-
sity of atoms, and ¢, is the vacuum susceptibility. Here p is
the density matrix in the interaction representation. For typi-
cal experimental situations the coupling constants v, , are
almost the same. Therefore we assume that v,=v,=w,.
Hence, within the SVEPA the wave equations are reduced to
the first order PDEs

= ivop31, 9L, = ivop3. 4)

Equations (4) can be rewritten in a matrix form as
. Vo
dH; = 1Z[D,p]. (5)
In the new variables the Liouville equation takes the form

1A
&Tp=l{ED—H1,p}. (6)

Here {=z/c,7=t—z/c. To make parameters dimensionless,
we measure the time in units of optical pulse length 7,
=1 us typical for the experiments on the slow-light phenom-
ena [4]. We also normalize the spatial coordinate to the spa-
tial length of the pulse slowed down in the medium, i.e., lp
=vgtp%c(93/ 2vy)t,,. Here ) is a typical magnitude of the
controlling field required in EIT experiments. We assume
this field to be of order a few megahertz. We choose (}(=3 as
a representative value. This corresponds to a group velocity
of several meters per second, depending on the density of the
atoms. We take the group velocity to be 107"¢, so the pulse
spatial length is 30 um, and { is normalized to 10~'3 s. Then,
in the dimensionless units, the coupling constant vozﬂ(z)/ 2
=4.5. The retarded time 7 is measured in microseconds and
the Rabi frequencies are normalized to MHz.

The system of equations (5) and (6) is exactly solvable in
the framework of the inverse scattering (IS) method [21-24].
This means that the system of equations (5) and (6) consti-
tutes a compatibility condition for a certain linear system,
namely,

0.0 = UND = éw @ - iH,D, (7)
I vop

9D =VND =~ —L . 8

@ =VND = ®)

Here, N € C is the spectral parameter. The comparison @,
against @, leads to the zero-curvature condition [21]
UN)=V,(N\)+[U(N),V(N)]=0, which holds identically with
respect to the linearly independent terms in \. It is straight-
forward to check that the resulting conditions coincide with
the nonlinear equations (5) and (6). At this point it is worth
discussing the initial and boundary conditions underlying the
physical problem in question. We consider a semi-infinite {
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=() active medium with a pulse of light incident at the point
£=0 (initial condition). This means that the evolution is con-
sidered with respect to the space variable ¢, while the bound-
ary conditions should be specified with respect to the vari-
able 7. In our case we use as the asymptotic boundary
conditions the asymptotic values of the density matrix at
7— +. To solve the nonlinear dynamics as described by
equations (5) and (6), the IS method considers the scattering
problem for the linear system (7), while the auxiliary linear
system (8) describes the evolution of the scattering data. The
purpose of this work is, in particular, to study an essentially
nonlinear interplay of the fields in both the channels. This
goal leads to considering for Eq. (7) the scattering problem
of finite density type (see [21], and references therein), i.e.,
Q,,—Q}, as 7— . For an account of other results for
the A system accessible through the IS method see, for ex-
ample, Refs. [14,22,23,25]. In this work we choose to use an
algebraic version of the IS method, i.e., the Darboux-
Bicklund (DB) transformations. The DB method does not
require a full investigation of the initial value problem and
merely allows mounting of a soliton on a chosen back-
ground. The resulting solution is, of course, consistent with
the underlying initial value problem. We use Darboux-
Bicklund transformations, in the spirit of Refs. [26-29], up
to certain modifications.

In the physical case considered in this report, the system
is assumed to be initially in a stationary state described by
the following background solution:

Q,=0, Q=Q(n), p=[h )l =[1X1[. (9

Notice that the state |1) is a dark-state for the controlling
field (7). This means that the atoms do not interact with the
field Q(7) created by the auxiliary laser. The configuration
(9) above corresponds to a typical experimental setup (see,
e.g., Refs. [1,2,4]). The function {)(7) models the controlling
field, which governs the dynamics of the system. The time
dependence of this function can result from modulation of
the intensity of the auxiliary laser. In general, {)(7) can also
depend on the spatial variable {. However, we do not specify
such dependence explicitly in the formalism below except
for a simple case of linear phase shift, which is discussed in
Sec. III.

The paper is organized as follows. In the next section we
describe the Darboux-Bicklund transformation for the A sys-
tem. In Sec. III we describe the mechanism of a transparency
gate for the slow-light soliton. In Sec. IV we discuss an
exactly solvable example of manipulation of slow-light soli-
tons, while Sec. V considers a similar problem for the case of
a fairly arbitrary controlling field. Section VI is devoted to
conclusions and discussion.

IL. DARBOUX-BACKLUND TRANSFORMATION FOR THE
A SYSTEM

In this section we describe the Darboux-Bicklund (DB)
transformation for the A system. First we reformulate the
linear system Egs. (7) and (8) in the matrix form, viz.

00 = éow —iHW, (10)
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W = %p‘l’?. (11)

Here W is a matrix consisting of three linearly independent
solutions of the linear system (7) and (8) corresponding to
three (not necessarily different) values of the spectral param-
eter \, i.e., N',\",\"”. The matrix spectral parameters L is
defined as

N0 0
£=l0 N o0 |,
O O A/Il

while P~'=L-Al
The N-fold (N= 1) Darboux-Bicklund transformation can
be formulated as

N

W[N] =2 (= D)™ E (A TP,
n=0

E,=1. (12)

It is clear that the linear system (10) and (11) is covariant
with respect to this transformation provided that for O<n
<N the following Darboux-Bicklund dressing transforma-
tions are satisfied:

H[NIEy_,(A) = En_(A)H; +id By, (D)

“pE () - A, (A,

2
(13)

ANIEcr8) = Ee Q)+ > 0D, (14)
together with the convention Zy,;(A)=E,(A)=1. The
meaning of Egs. (13) and (14) is that they connect the “seed”
solutions H;,p of the nonlinear system with the dressed
(N-soliton) solutions H[N],p[N]. To derive the matrices
{EJi.,, we specify a set of solutions {W,}\_, corresponding
to certain fixed values of the matrix spectral parameter L,
ie., {Ek}szl, where

AN, 0 0
L=l 0 N, 0 |, Pl=L-AlL
0 0 N

We then demand

N
> (- ) EN (AP =0, k=1,...N. (15)
n=0

This linear system allows the dressing matrices {Z;(A)}}_, to
be obtained through Cramer’s rule. It can be shown that so-
lutions of Eq. (15) satisfy the relations (13) and (14).

Since in what follows we only discuss the case N=1 for
convenience, we changed notations as  follows
H[1]1—H,,p[1]—p,E,(A)—E(A). Then the dressing for-
mulas (12), (13), and (14) reduce to
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. [
A=H - J[DEOL p=E&)p="@A)  (6)

V=Upl-EQA)V, (17)
while from the linear system (15) we obtain
E(A) =W (L, - AN, (18)

As was explained above, the matrix W, is a specification of
W corresponding to a particular value of the matrix spectral
parameter

Ao 0 O
Li=[0 A\ O
0 0 X

We denote as @ the fundamental matrix of solutions for the
linear system (7) and (8) for A=\,. It can be shown that for
the value of the spectral parameter )\Z)\S the fundamental
matrix is ®o= (<I>61)T. Since the subspace of solutions corre-
sponding to )\; is two dimensional, the matrix V¥, is con-
structed as follows. The vector \I’(13)=c1®él)+c2q)éz)+c3q)é3)
is a general solution of the linear problem with A=\,. Here
upper index in the brackets i=1,2,3 denotes a vector column.
To satisfy the structure of the operator Z [Eq. (17)] we re-
quire that (‘I’(S),\I’(II’Z))=O, where (---,---) denotes a scalar
product of two vectors in three-dimensional (3D) complex
vector space, and the vectors ‘I’(ll’z) correspond to )\=)\S. Due
to the definition (<I_>g),<bg))=5,~!j.

(1\7\2/)e can easily find two appropriate orthogonal vectors
L Sl

V= (5 + DY - [ (OP + DY),

VO = B - .

The algorithm for finding new solutions of the nonlinear sys-
tem (5) and (6) can be formulated as follows. Find a solution
d, of the associated linear system (7) and (8), corresponding
to a certain “seed” solution of the nonlinear system (5) and
(6). Build W, and build Z(A), then use the dressing trans-
formation (16). It is straightforward to show that for the state
(9) of the atom-field system a general solution of linear sys-
tem (7) and (8) can be represented in the following form:

iy 0 208
(D():(ez()‘ )\—A> 0 )7 (19)
0 T(7,\)

where a 2 X 2 matrix T(7,\) is defined through two complex
functions w(7,\) and z(7,\) as follows:

T(7,\) = [T+ W(7,\)]e? ™M, (20)
0 —=w'(n\N)
W(rM) = (w(T,)\) 0 )’
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A
i57'+ z2(7,\) 0
Z(T,\) =

(e

A .
—i57+z (7,N)

Here I is a 2 X2 identity matrix. The function w(7,\) satis-
fies the Riccati equation

1 | -
—idw(7,N) == Mw(T,\) + EQ(T) - EQ (DW(,\)
(21)
and the function z(7,\) is defined through w(7,\)

1 .
—idz(T,\) = EQ'(T)W(T,)\). (22)

It is easy to check that ®, has the same form as ®, with A
replaced by \*, and T replaced by

_ [+ W(z\)]e” )
T(T,)\)=[ (. *)]e* -
1+w(r,AN)w (r,\)

(23)

Applying the procedure described above, we find for the
fields

Q,==2E(0)3, == 2(\g = Np)e {[w(m,\)e?2 + e N},
24)

0, = (1) = 2E(0)35= (1) - 200 - A — w(r\)e?]
X[w(T,\)e?2 + e®3]/IN. (25)
The corresponding density matrix p=|u )i,/ reads
E(A)1,1|1> + E(A)2,1|2> + E(A)S,I 13)
INo—A|

No-4A (M—ﬁu
QM—M+mrMN|D
e 1 (N = \g) ( [e®2—w"(T,\)e?]
No— A N
. [W(T,)\)/e\‘;z + e“’3]|3>>’

|‘7’dt> =

12)

(26)

Here, ¢, is the phase of the coefficient ¢,. The module of this
coefficient can be set to unity without loss of generality. For
shorter notations we have also defined two phases [see Eqs.
(19) and (20)]:

i

‘P2:Z(T’)\)],] +1n(C2) - 2()\T+ )\V_Oi)

i vod

20-4)° 7

=z(7,\) +In(c,) —
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i Vol
Q3 =Z(T,)\)2!2 + 11’1(6‘3) - E()\T'i‘ N j A)

i Vog

2(A-4) 28)

=—iNT+Z (T,\) +In(c3) -

and the normalization function
N=1+Re{[w(r,\) = w(r,\)]e2 5k + 1+ [w(m\)|?]

X (e97792 4 ¢93°3) (29)

In conclusion of this section, we note an important difference
between ¢, and ¢s. It will be shown below that for a con-
stant or slowly varying background field the function z(7,\)
is of the same order of magnitude as the control field inten-
sity |Q(7)|*. Therefore, for small intensities the phase ¢, is
slowly varying in time and describes the slow-light soliton,
while the phase ¢5 is varying with a speed close to the speed
of light in the vacuum due to the term A 7.

III. THE TRANSPARENCY GATE

In this section we introduce a concept of fast and slow-
light solitons in the A medium and explain how the nonlinear
interplay between the solitons leads to a possibility to control
transparency of the medium. We discuss first the mechanism
of transparency control for the slow-light soliton. We explain
how the fast soliton propagating in the a channel hops to the
b channel where the slow-light soliton is propagating. The
fast soliton then destroys the slow-light soliton, thus stopping
the propagation of the latter, and then disappears itself due to
the strong relaxation in the system.

As was indicated above, in this work we consider exact
solutions of the Maxwell-Bloch system (5) and (6) existing
on some finite background. The background field plays the
same role as the controlling field in the conventional linear
theory of EIT, but it enters the exact solutions as a parameter
in a substantially nonlinear fashion. We start with the case of
a time-independent field specified as follows:

Qu = 0, Qb = Qoeik(. (30)

Here k<<k, is introduced in order to take into account small
spatial variations of the phase. The intensity of the back-
ground field ) is an experimentally adjustable parameter,
which provides control over the transparency of optical gates
and determines the speed of the slow-light soliton. The
Maxwell-Bloch system (5) and (6) is satisfied with the fol-
lowing initial state of atoms:

k
1—-—x 0 0
L)
k k )
Po= 0 —<5+A> —Qee ™ . (31)
Yy 2 L0
k . k
0 Qe —(f - A)
Y Y

The parameter x determines the population of the excited
state and has to be larger than 2A. It is important to notice
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that for a time-independent background field atoms can be
prepared in a mixture of dark state and polarized states only
for nonvanishing parameter k, which allows one to access a
wider range of physically interesting situations.

For a time-independent background field we immediately
find solutions of Egs. (21) and (22), viz.

Qoeikg

w(T\) =wy = ————, (32)
e W2+ 02
i Q3T
2 N) =zo7= —Qpe *wgr= —————_ (33)
0T 0 200+ A2+ Q))

As we noted in the previous section, when (), depends on ¢
((DO)l 1= e(ilz)[)‘ﬂ'(Vo_kx){/()\—A)],

and the structure of the solution T(7,\) in Eq. (20) is slightly
modified, i.e., we have to replace Z(7,\) with

k¢ )\) ikx ikl

7 I- 05, (34)

Zl(T,)\)zZ<T+ +4(7\—A) 5

where o is the Pauli matrix. Hence, the phases (27) and (28)
read
iQ%r ik{

@ =In(cy) + ———
U e N0 2

i(3kx + 2k\N? + Q3 — 21)¢

i 35
+ 2= 1) (35)
In(e) iNT im2+Qgr+ik5
=lnl¢s)——————" +
3 3 B 2 2
i(3kx — 2k\N? + Q2 = 2w0) ¢ (36)
4N - A)

Using the general solution (24) and (25) we can find the
dynamics describing the formation of the transparency gate
for initial conditions specified in Egs. (30) and (31). For
simplicity, in this section we take the spectral parameter to
be purely imaginary Ay=ig, and for a solitonic type of solu-
tion gy,> (). The solution corresponding to the phases (35)
and (36) describes the nonlinear interaction of fast and slow-
light solitons. This solution is parametrized by the constants
¢, 3 defining the position and phase of the two solitons. As
we have already indicated above, the phase ¢, determines
the position of the slow-light soliton whereas ¢; determines
the position of the fast signal. In practice these constants ¢; 3
are defined by the initial condition, which specifies the actual
pulse of light entering the medium at the point z=0. To un-
derstand the structure of the slow-light soliton one can set
¢3=0. This choice corresponds to taking the fast soliton to
—co in the variable 7. Indeed, this specification removes the
fast pulse component corresponding to ¢3 and thus singles
out the slow-light soliton part. The slow-light soliton solu-
tion assumes then the following form [22,24]:

O Nwelmeren)
a =

7 > sech(¢,), 37)
V1 + | w
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Q, = - Qpe*tanh(g,), (38)

where
1 2
¢;=Rep, + Eln(l + |wol?) (39)

is the phase of the slow-light soliton. For simplicity, in the
following we let k=0. From the expression above and in the
simplifying approximation Qg/ 8(2]< 1,A=0 the group veloc-
ity of the slow-light soliton can be easily derived:

QZ
~c . (40)

v
2 Vo

8

The pure state of the atomic subsystem corresponding to the
slow-light soliton solution reads

~ Re\ — A — i ImAtanh, ﬁa
= 1)- 2
Q
- 4|3y, 41
TS (1)

Notice that the population of the upper level |3) is propor-
tional to the intensity of the background field. The speed of
the slow-light soliton is also proportional to QS This means
that the slower the soliton, the smaller the population of the
level |3) and, therefore, the dynamics of the nonlinear system
as a whole is less affected by the relaxation process.

To understand the structure of the fast soliton one can
choose c,=0. We then arrive at an expression describing a
signal moving on the constant background with the speed of
light (fast soliton)

_ ()\;’; — \)eilm e3=e1)

a=

sech(ey),
VL ol '

), = - Qe*tanh(¢)), (42)
where the phase of the fast soliton is
¢r=Re @3+ %m(l +|wol?).
The atomic state is described by the function
woldy

2N A

Re N — A —iIm A tanh ¢
A=A

| = 1)+ 2)

Q,
2N =4

13). (43)

We emphasize the principal difference between fast and
slow-light solitons. The slow-light soliton vanishes when the
controlling field is zero due to the factor w, in Eq. (37).
Another important feature is that for the slow-light soliton
the population of the upper level |3) is proportional to ()
and is small for small background fields and therefore stable
to optical relaxation. In contrast, the amplitude of the fast
signal is not limited by (), and is determined by the spectral
parameter &,. The population of the level |3) is also defined
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FIG. 2. Knocking down the slow-light soliton. The two upper
plots correspond to the dynamics of the intensities of the fields (),
and Q. The two lower plots show the populations of the levels |2)
and |3). The parameters of plotted solutions are c,=c3=1,\¢
=4.1i,A=0,Q,=3.

by &, which means that for large spectral parameters the fast
signal will be attenuated by the relaxation. As we discuss
below, in the absence of the background field the fast signal
behaves as a conventional SIT soliton in a two level system
1) 3).

Figure 2 illustrates the propagation and collision of the
fast and slow-light solitons according to Egs. (24) and (25).
The figure for I, shows the intensities of the signals in chan-
nel a. We see that before the collision only the slow-light
soliton exists in channel a, while after the collision the slow-
light soliton disappears and a fast intensive signal appears,
whose velocity is slightly below the speed of light. The fig-
ure for I, is complemented by the figure for the intensity 7,
of the field in channel b. The slow-light soliton corresponds
to a groove in the background field ). It is clearly seen that
after the collision the slow-light soliton ceases propagating
in channel b, while some trace of the fast soliton still can be
noticed in that channel. The process described above can be
summarized as if the fast soliton destroys the slow-light soli-
ton. The notion of a transparency gate requires the existence
of two distinctly different regimes, which are transparent
(open gate) and opaque (closed gate). In the absence of the
fast soliton the gate is open for the slow-light soliton. When
the fast soliton is present the slow-light soliton is destroyed,
while the fast intensive signal created after the collision in
channel « is attenuated due to strong relaxation in the atomic
subsystem. The gate thus closes in the course of the dynam-
ics due to the relaxation process. To further explain this pro-
cess we provide the Fig. 2 plots for populations of the levels
|2) and |3).

Notice that before the collision the population of the up-
per atom level |3) is negligible and is approximately given
by the formula for the slow-light soliton solution (41) (see
the lower right plot of P;). The populations of the lower
levels |1,2) are determined by the slow-light soliton (see the
lower left plot of P,). Indeed, the fast signal existing in chan-
nel b does not interact with the atoms because at the onset of
the dynamics their state coincides with the dark state |1).
Figure 2 shows that after the collision the atoms of the active
medium are highly excited and therefore the level |3) is
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strongly populated. This leads to the fast attenuation of the
rapid intensive signal in channel a due to the relaxation. The
optical gate closes.

To this point we have described a mechanism of control-
ling the transparency of the medium for a particular type of
slowly moving signals. We now discuss a possibility to read
information stored in the atomic subsystem. Let us assume
that the background field vanishes, i.e., 3=0. As was ex-
plained above, the speed of the slow-light soliton then van-
ishes as well. However, the information about polarization of
the slow-light signal is stored in the atomic subsystem. This
effect can be interpreted in terms of the concept of a polar-
iton, which is a collective excitation of the overall atom-field
system. The notion of a polariton for the A system has been
used before. In the linear case the dark-state polariton was
discussed in Ref. [30]. In the strongly nonlinear regime,
which is the case for the present work, a similar interpreta-
tion is possible. Indeed, the field component of a slow-light
soliton solution can be interpreted as the light contribution
into the slow-light polariton. When the controlling field (),
vanishes this contribution also vanishes, along with the speed
of the polariton. The latter then contains only excitations in
the atomic subsystem. The general solution (24) and (25) is
then reduced to the form

2i { Ayl +.1(03) . }
legeXplt——> L +ivin| 7/ | —1
P T TR VA

cosh(ho) + sexpl2dy ]

a bl

N _ i¢]+ln(cz)—i A
Qb =e 2(A+igg) Qa, (44)

where ¢,0=g0v¢/2(A%+€)+In(|c,|) is the phase of the
slow-light soliton, and ¢y=g(7+eo1{/2(eg+A?%) +1n(|cs)) is
the phase of the fast soliton for the vanishing background
Q. The form of the fields resembles a superposition of fast
and slow-light solitons in Egs. (24) and (25) with the van-
ishing velocity of the slow-light soliton. This last exponential
term in the denominator represents the fast signal contribu-
tion. The component containing hyperbolic cosine describes
the information about the slow-light soliton stored in the
medium after the soliton was stopped. The overall picture of
dynamics corresponds to the scattering of the fast soliton on
this localized atomic polarization pattern. The atomic state
describing this scattering reads

P igy €XP0—1+ 20 A )
=— +
VAZ4 gl P01+ - A2 3

0
2isoexp{i(& +arg(c,) - 901) + ¢s0]

2(83 +A?) 2)
VA + £5(e*P0 + 1 + ¢*Pm)
Q,
- == (45)

2VA% + 8%

For c3=0 the fields vanish, while the atomic state reduces to
a form corresponding to a stopped polariton described by Eq.
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FIG. 3. Reading the optical information by the fast soliton. The
two upper plots illustrate the dynamics of the fields (), and (). The
two lower plots show the populations of the levels |2) and |3). The
standing peak on the plot for P, corresponds to the stored informa-
tion in the form of the localized polarization. The rapidly moving
localized excitation of the atoms given on the plot for P represents
the act of reading. The background field (=0, and the coupling
constant is the same as before, i.e., yy=4.5.

(41) with Q4=0. In other words, when the slow-light soliton
is completely stopped, the information borne by the soliton is
stored in the spin polarization of the atoms. As long as the
upper state |3) is not populated, the state of the atomic sub-
system is not sensitive to the destructive influence of the
optical relaxation processes.

The conventional way [2] to read the information stored
in the atoms is to increase the intensity of the background
field. Our method of reading the information is different. We
propose to send the fast soliton into the space domain in the
active medium, where the information is stored. The polar-
ization in the domain is then flipped by the fast signal. This
is how the reading of information is realized. This way of
reading optical information is advantageous because it in-
volves fast easily detectable processes. Figure 3 illustrates
the mechanism of the reading. Notice that the act of reading,
based on the polarization flipping induced by the fast signal,
can be realized on a very short time scale compared to typi-
cal relaxation times.

IV. NONADIABATIC MANIPULATION OF SLOW-LIGHT
SOLITONS

In this section we discuss an exactly solvable, though
physical, case describing controlled preparation, manipula-
tion, and readout of slow-light solitons in atomic vapors and
Bose-Einstein condensates. The group velocity of the slow-
light soliton depends explicitly on the field €, i.e.,
vgxc(Q(%/ 2v,) [see Eq. (40)]. This expression immediately
suggests a plausible conjecture that when the controlling
field is switched off the soliton stops propagating while the
information borne by the soliton remains in the medium in
the form of a spatially localized polarization pattern, i.e.,
optical memory, which can be recovered later. For brevity we
refer to this pattern as a “memory bit.”

We consider the following scenario for the dynamics (see
Fig. 4). Before 7=0 we create in the medium a slow-light
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FIG. 4. The intensity of the field (), as the function of time .
The thick solid curve shows the time-dependence of the controlling
background field at entrance into the medium, i.e., at z=0. We also
plot I, at z=6 (dashed curve) and at z=12 (dotted curve). We
choose a=4, and the delay interval is 7—7,=3. The dimensionless
units are defined in the text.

soliton, and assume it is propagating on the constant back-
ground ). We then slow down the soliton by switching off
the laser source of the background field. We assume an ex-
ponential decay of the background field with a decay con-
stant a, i.e., Qpe ", At a certain moment of time, say, T
=4/« the field becomes negligible. Therefore, we cut off the
exponential tail and approximate it by zero. At this step the
soliton is completely stopped. The position where the soliton
stops, depends on the decay constant « and on the moment
when we switch the laser off. The information borne by the
soliton is stored in the form of spatially localized polariza-
tion. This formation can live a relatively long time in atomic
vapors or BEC [11]. At the moment T we restore the slow-
light soliton by abruptly switching on the laser. The
whole dynamics is divided into four time intervals U?:()Di
=(-00,0]U[0,T,]U(T,;,T]U(T,»). The time dependence of
the intensity of the background field at entrance into the
medium is given in Fig. 4.

Before the soliton enters the medium, the physical system
is assumed to be prepared in the state described by Eq. (9).
The function (7) now models switching the controlling
field off and on again. This function reads (see Fig. 4)

QN =Qu{O(=7) +e*TO(7) = O(7=T,) ]+ O(7-T)}.
(46)

Here O(--+) is the Heaviside step function with ®(O):%. For
the state (9) with Eq. (46) we exactly solve the nonlinear
system (5) and (6) as well as the auxiliary scattering problem
(7) and (8) underlying its complete integrability. The latter
result is the cornerstone of analytical progress achieved in
this section. This result allows to mounting a soliton on the
background [Egs. (9) and (46)] using the Darboux-Bicklund
transformation described in Sec. II (see Ref. [24]). According
to the results of Sec. II the one-soliton solution correspond-
ing to the time-dependent background (9) reads

~ (N =Mw(nN)

= —elﬁssech b,
V1 + |w(r,\)? ¢
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~ (N=NYw(TN)

Q= ebsech G, — (1), 47
b 1+|W(7’,7\)|2 erssec ¢s (T) ( )
with the atomic state p=|,)(y|, where
~ Re A —A —iIm \ tanh ¢, ﬁa
= =[1) + 2
Q
- “—|3). 48
e (48)
Here,
-~ - 1 | —
by= o+ %glm)\ At Re[z(7,\)] +InV1 + [w(7,\)]%,
=y~ "ERe—— + Imlz(7\)],

where N is an arbitrary complex parameter. The functions
w(7,N),z(7,\) are of piecewise form, specific to each time
region D;. For clarity we organize elements of the solution
corresponding to different time regions in Table I. The func-
tion wy is defined as in Eq. (32) with k=0, the index of
Bessel functions is defined as y=(a+i\)/(2a). The values C;
of the constant C for each time region D; are specified in the
rightmost column of the table, the moment of time 7 is cho-
sen as in Fig. 4, i.e., T=4/a+3. Notice that in the table w,
=w,(e0,\) and z,=z;(%,\). Therefore the solution in the re-
gion D, is parametrized by the asymptotic values of the data
for the region D; corresponding to the absence of a cut off of
the exponentially vanishing tail. The region D, describes the
phase when the slow-light soliton is stopped: the fields van-
ish, while the information borne by the soliton is stored in
the medium in the form of spatially localized polarization. At
the time T the laser is instantly turned on again. The stored
localized polarization then generates a moving slow-light
soliton. This process is described by the solution in the re-
gion D;. Except for the moment 7, the functions w, z are
continuous in 7. This ensures that the physical variables such
as the wave-function and field amplitudes evolve continu-
ously.

We demonstrate typical dynamics of the intensity of the
fields in Figs. 4 and 5. In Fig. 4 the decaying shock wave,
whose front has an exponential profile, propagates with the
speed of light, reaches the slow-light soliton and stops it. An
intense and narrow peak is developing in the background
field when the shock wave hits the soliton (dotted curve).
This peak signifies a transfer of energy from the soliton to
the background field. After the auxiliary laser has been
switched on again, another steplike shock wave reaches the
localized polarization formed in the medium by the incoming
soliton, and retrieves stored information in the form of a new
slow-light soliton. A narrow and deep depression in the in-
tensity plot means now the energy transfers in the opposite
direction, i.e., from the background field to the restored soli-

ton. The dynamics of the field ﬁa is plotted in Fig. 5. The

contour plot shows that in the process of rapid deceleration
the solitonic trail profiles end sharply. Notice that the char-
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TABLE 1. Exact analytical solution.

D Q(7) w(T,\) z2(7.N) c
Do QO wWo éQOWOT 0
Q(7) Q(7) Q(7) Q(7) o] Q ; Q
I 7Y i WY T ™ A 3a) ! 2a
i —ay7+In
() () g A I g L I =20 iy |-
AN 20 [T 20 ) N 2a N 2a) "N 2a
Op\”
D, 0 0 C(‘E) /T(1=7) C,=C,
1
nCJ % +J %
N 2a N2
l 5 SN (D) i) (T -
D, Q, Qtan Ewmg(f—n) Com = ; e ; 0 Q220N = \2+ QD)
in C+1 T2 Qg

1 A -7 A A5
A tan(; VA2 +Q3(7- T)) —iV\N2+Q)

acteristics of the restored pulse, i.e., the width and group
velocity, are very close to those of the input signal existing in
the medium before the stopping.

We now calculate the half width of the polarization flip
written into the medium after the soliton is completely
stopped. It reads

[A-AP

W.=de¢In(2 +3)———.

(49)

It is important to notice that the width (49) of the optical
memory formation does not depend on the rate a. In other
words, the width of the memory bit is not sensitive to how
rapidly, i.e., nonadiabatically, the controlling field is
switched off. This leads to an important conclusion. Indeed,
through the variation of the experimentally adjustable param-
eter a, it is possible to control the location of the memory
bit, while its characteristic size remains intact. Dutton and
Hau have already reported [11] that when the switching is
made quickly compared to the natural lifetime of the upper

z
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FIG. 5. Contour plot of the intensity of ﬁa. We choose A\
=—4.1i and zero detuning, A=0. The break-up area in between the
two solitonic trails manifests the creation of a standing memory bit
in the medium.

level, the adiabatic assumptions are no longer valid but, re-
markably, the quality of the storage is not reduced in the
nonadiabatic regime. Our analytical result is in excellent
agreement with this observation. Notice again that « is a
parameter, which describes how rapidly the controlling field
decays when the auxiliary laser is switched off. We empha-
size that this parameter is independent of the properties of
the A medium.
The group velocity of the slow-light soliton reads

v w(n, M
- i . (50)
C Vo[l + |W(T’?)| ] + |W(T’}\)|2

2/A -\

Notice that in the case of the constant background field, i.e.,
in the case @=0, the conventional expressions for the slow-
light soliton (37) and (38) along with the expression for the
group velocity (40)—the main motivational quantity for this
report—can be readily recovered from Egs. (47) and (50).

The distance £ () that the slow-light soliton will propa-
gate from the moment when the laser is switched off until the
full stop, is

2c]A =N |7

volm(\) |
_ 2c|A -\
~ wo[tm(\)|

L(a)=

{1+ pwof? = Re[e(= )] (51)

It is evident from our solution (51) that the soliton possesses
some inertia or, in other words, a momentum of motion.
Indeed, even if the controlling field is switched off instantly
[notice that lim,_,.Rez(0,\)=0], the soliton will still
propagate over some finite distance after the shock wave of
the vanishing field, propagating with the speed of light, has
reached the soliton.

In Fig. 6 we show the dynamics of localized polarization
corresponding to soliton dynamics shown in Fig. 5. The plot
is remarkably similar to the corresponding figure in Ref. [4]
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0:%5

FIG. 6. Population of level |2). Here, A\=—4.1i and A=0. The
time interval 1=<t=<4 corresponds to a standing localized polariza-
tion flip. Compare with experimental results in Fig. 1 of Ref. [4].

describing recent experiments. The central part of the plot in
Fig. 6 shows the standing memory bit imprinted by the slow-
light soliton. Notice that in the presence of the soliton the
population flip from level |1) to |2) in the center of the peak
is almost complete. This property of the solution manifests
the major distinction between the strongly nonlinear regime
considered in our paper and the linear EIT theory. As was
already pointed out earlier [11,17,20], the regime of two
fields being comparable in magnitude opens up new avenues
for an effective control over superposition of two lower
states of the atoms. Changing the parameters of the slow-
light soliton we can coherently drive the system to access
any point on the Bloch sphere, which describes the lower
levels. For zero detuning, the solution discussed here shows
that when the field vanishes the maximum population of the
second level reaches unity. Using Eq. (48) it is also not dif-
ficult to estimate the maximum population of the level |2) for
finite detuning after the soliton was completely stopped:
[\]?/|A=X\]?. Notice that only a small fraction of the total
population is located in the upper level |3) and provides for
some atom-field interaction. This population is proportional
to |Q|*. Numerical studies of the Maxwell-Bloch equations
with relaxation terms included [11,17] show that for experi-
mentally feasible group velocities of the slow-light pulses,
i.e., when the maximum intensity of the controlling field is
not very high, the pulses are stable against relaxation from
level |3). Here we consider the same range of parameters.
Therefore, the destructive influence of relaxation on our so-
lution (47) is negligible.

V. THE CASE OF ARBITRARY CONTROLLING FIELD

In this section we build a single-soliton solution on the
background of the state of the overall atom-field system de-
scribed by Eq. (9) for a quit general (complex) controlling
field (7). The single-soliton solution corresponding to the
background field (7) is given by Egs. (47) and (48) with
the functions w(7,\) and z(7,\) defined below.

We envisage the dynamics scenario similar to that of the
previous section. We assume that the slow-light soliton is
propagating in nonlinear superposition with the background
field, which is constant at 7— — and vanishes at 7— +.
The speed of the slow-light soliton is controlled by the in-
tensity of the background field. Therefore, when the back-
ground field decreases, the slow-light soliton slows down
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and stops, eventually disappearing and leaving behind a
standing localized polarization flip, i.e., optical memory bit.
Should the background field increase, the soliton will emerge
again and accelerate accordingly.

To be specific, we define the asymptotic behavior for the
field Q(7) in the form

Qr——-0)=0Qy, Q(r7— +2)=0. (52)

The asymptotic boundary conditions (52) dictate the follow-
ing asymptotic behavior for the functions w(7,\) and z(7,\)
defined by Egs. (21) and (22):

W(_ m9)\)_wo_ 2]{()\)’ W(+ 9)\)_0’ (53)
(=0, \) =zy7= i—|QO|2 T (54)
ST k()

where k(\)=(\+V\?+|Q|?)/2. The function z(7,\) satisfy-
ing the asymptotical conditions (54) reads

©

Z(T,)\)=Z07+f (éﬂ*(T,)W(T'J\)—ZO)®(T— )dT .

—o0

(55)

The function w(7,\) is defined by the relations

w(T,\) = if“ e M9@ (7 5)w(s,\)ds, (56)

Q(r Q,|? QO(r
Frn) = () k2<|40|k ()(k)> 57

Here O(7) is the Heaviside step function. We rewrite the
relations (56) and (57) in the form of nonlinear integral equa-
tion, viz.

() = Q;T)

+f e M@ (7= 5)w(s,\)ds

0 2
xf K97 s)(Q(T)W(s)\) méf' )ds.

(58)

Hence, we can construct a solution w(7,\) iterating Eq. (58)
and starting iterations from WO(T,)\)=%Q(T). Notice that the
last term in Eq. (57) provides a correction of order k=2, be-
cause the function w(7,\) asymptotically behaves as 1/k. In
the adiabatic regime when the background field varies
slowly, i.e., all derivatives of {)(7) are much smaller than &,
we can integrate Eq. (56) by parts. Preserving only the low-
est order term with respect to k we obtain

7')‘

w(T,\) = (59)

Hence, at the lowest order in k£ we find
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Z2(T,N) = zo7+ f <ﬁ|ﬂ(r')|2 - Z())@(T— 7)d7 . (60)

As one can easily observe this expression is in agreement
with the asymptotic condition (54).

For an arbitrary dependence of the background field on
the retarded time 7, the speed of the slow-light soliton can be
represented in the following form:

Ve 9 . 61)
c T¢Y 0§ ¢s

It can be readily seen that

2
9, _ImMWENE - dd v 1 o)
ar  1+|w(n,N) a2 A=A
We have thus found a general solution for the velocity v, of
the slow-light soliton propagating on an arbitrary time-
dependent background field in terms of the function w(7,\)
given by Eq. (58). This result provides a new way to study
dynamics of localized optical signals in the nonlinear EIT
systems. It allows us to easily suggest different schemes to
slow-light down, stop, and reaccelerate slow-light solitonic
contribution in the probing pulse. With such techniques one
can introduce a concept of probing different regions of the
media by changing the time that the soliton dwells at a par-
ticular location. This time is important in situations where
the interaction between light and some impurities inside the
EIT medium is weak and requires slowing the signal down in
the vicinity of these impurities in order to gain more infor-
mation about the structure of the medium.

We also introduce a notion of the distance £[()] that the
slow-light soliton will propagate until it fully stops. This
quantity is important because it describes the location of an
imprinted memory bit. The square brackets indicate a func-
tional dependence of the distance on the controlling field
Q(7). To begin with we consider the case when the field is
instantly switched off at the moment 7=0, ie., Q(7)
=0yO(-7). Then we easily find the solution for w and z:

w(TN) =wo[O(= 1) + O(De ™, z(,\) =z,0(- 7.

Hence, we can obtain the distance L, that the soliton will
propagate from the moment 7=0 until its complete stop at
T— 0

c|A =\
7 yolIm()|

Here we make use of the assumption that Im(\) <O0.

Now, we can give the definition of the distance L[()] for
a generic field Q)(7) satisfying the conditions (52). It is con-
venient to define it as a relative distance, namely the differ-
ence between the absolute coordinate of the stopped signal at
the maximum of the signal and the distance L. The relative
distance reads

2¢|A = \J?
V()Im()\)

In(1 + |wol?).

L[O]= fx Re(éﬂ*(r)w(r,)\) —2z00(- T))dT.

Using the representation (57) we find
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|:J f —zk 7—5)@(7_ S)

92( )W(s )\))ds dT] (63)

2c]A=AP
V()Im()\)

(|Qo|2

LIO]=

O(-7) -

If we assume that {(7) is a smooth function and substitute
the solution for w(7,\), we find the result in the form of a

series
2c|A -\ 2 - 1
C| | I (E - ) b

2ypIm(N) e

where I,[Q)] are regularized Zakharov-Shabat functionals
[21]. The first two functionals read

LIO]=

II[Q]=_f QD) - QO (= n)]d7, L[]

= (1/2i)f [Q7(5)3,0(s5) = Q(s5)3,Q" () ]ds

. The other functionals can be obtained through the iteration
procedure described above. As is usual for the boundary con-
ditions of finite density type, I, is not a proper functional on
the complex manifold of physical observables, in the sense
described in Ref. [21]. In that sense all other functionals in
the expansion with respect to k are proper. It is a plausible
conjecture that the minimum of the functional of length (63),
ie., 6L[Q]/80=0 with *L[Q]/80*>0, is achieved when
the controlling field is switched off instantly. Therefore it
seems intuitively correct that the minimum is delivered by
the the function (@ (—7) discussed above. This conjecture is
also supported by the case discussed in Sec. IV, when the
controlling field vanishes exponentially, i.e., (7
=0[O(=7)+O(7)e ). In this case the minimum of length
is delivered by a singular limit @ — o, i.e., in the regime of
instant switching off of the controlling field.

Another important characteristics of the system is the
shape of the imprinted signal. It is easy to show that the
width W, of the imprinted memory bit is not sensitive to the
functional form of {)(7) and is the same as given by Eq. (49).
In other words, this exact result is valid regardless of how
rapidly we switch the background field off. This means that
specification of )(7) only influences the location of the
stored signal and not its shape. This result is strongly sup-
ported by recent experiments [ 11]. This reference emphasizes
the phenomenological fact that the quality of the storage is
not sensitive to the regime of switching off of the control
laser. Our exact result (49) provides a rigorous basis for this
experimental observation.

To conclude this section we discuss the applicability of
the concept of effective time to the regime of nonadiabatic
variations of the controlling field. This concept was used
before in Refs. [4,14,20] for approximative descriptions of
pulse propagation on the background of a time-dependent
controlling field. To account for this dependence, these ref-
erences introduce an effective time variable [a “scaled time”
of Ref. [4] and see the function Z(7) of Ref. [14]]. Reference
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FIG. 7. Here A=5¢"04" A=0,Q(7)=0.5¢"*". It is clear that
when the background field changes relatively fast the exact normal-
ized solution given by solid [|Q,/Q(7)|] and dotted [|Q,/Q(7)]]
lines are drastically different from approximative one (dashed and
dot-and-dashed lines, correspondingly).

[14] shows the concept of effective (scaled) time to be very
useful in the regime of linear EIT, while Ref. [4] demon-
strates applicability of this concept in the strongly nonlinear,
though adiabatic, regime. The effective time approximation,
in our formulation, is given by expressions (59) and (60)
employed in the slow-light soliton solution (47) and (48). In
Fig. 7 we compare the resulting approximate solution against
an exactly solvable case discussed in Sec. IV. We point out
that the method of effective time has a rather limited appli-
cability in the strongly nonlinear noadiabatic regime, which
is most interesting for modern experiments [11]. Indeed, this
method as applied to the slow-light soliton gives rise to large
errors in the regime of nonadiabatic dynamics. Therefore
heuristic attempts [31] to substitute an effective time into the
slow-light soliton solution (37) and (38) would be largely not
accurate (see Fig. 7).

VI. CONCLUSIONS AND DISCUSSION

In this paper we have discussed a physically realistic, ex-
actly solvable model of manipulation, i.e., preparation, con-
trol and readout, of optical memory bits in the strongly non-
linear, and more importantly, nonadiabatic regime. We
discussed a concept of the transparency gate for the slow-
light solitons in a A-type medium. We explained how the fast
soliton can destroy the slow-light soliton and close the gate
for the latter. We also described the process of reading opti-
cal information, written into the active medium by the slow-
light solitons. We have investigated a mechanism of dynami-
cal control of the slow-light soliton whose group velocity
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explicitly depends on the background field. For a quite gen-
eral background field, we found the location and shape of the
memory bit written into the medium upon stopping the sig-
nal. Remarkably, the width of this spatially localized stand-
ing polarization flip is not sensitive at all to the functional
form of the controlling field and is defined by the parameters
of the slow-light soliton only.

It is worth discussing here a possibility to actually create
in the A-type atomic medium the slow-light solitons. The
general physical feature underlying the mathematical prop-
erty of complete integrability is a delicate balance between
the effects of dispersion and nonlinearity inherent in the me-
dium. Provided that this balance is observed and the system
is completely integrable, it is a general fact that virtually any
sufficiently intensive localized initial condition creates soli-
tons. The overall picture of nonlinear dynamics can be
roughly described as follows. The evolving signal created by
the incident pulse in the course of the dynamics separates
into a number of solitons and a decaying tail. The latter
vanishes in due course. The solitonlike signals survive (ide-
ally, i.e., in the absence of dissipation) for an infinitely long
time. When the physical conditions underlying the complete
integrability of the optical system are met, the general pic-
ture of the nonlinear dynamics is similar to that described
above. Namely, a fairly arbitrary localized and intensive ini-
tial signal creates in the course of nonlinear dynamics a num-
ber of slow-light solitons. The number of slow-light solitons
can be derived from the analysis of the corresponding zero-
curvature representation. The signal (37) and (38) is a ge-
neric solitonlike solution of the nonlinear system (5) and (6)
and therefore it is very plausible that such signal can be
created. To conclude, we want to emphasize that in our con-
siderations the distinguished role is assigned to the back-
ground field Q(7) that turns out to be a nonlinear analog of
the conventional controlling field appearing in the linear EIT
formulation. The difference between the linear and nonlinear
cases lies in the fact that in the nonlinear case the control
field and the slow-light soliton solution are present in the
same channel in an inseparable nonlinear superposition.
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